NOTE

A New Nucleosidyl-peptide Antibiotic, Sansanmycin

Yunying Xie, Ruxian Chen, Shuyi Si, Chenghang Sun, Hongzhang Xu

Received: September 12, 2006 / Accepted: January 13, 2007 © Japan Antibiotics Research Association

Abstract A new nucleosidyl-peptide antibiotic, sansanmycin, was isolated from an unidentified *Streptomyces* sp SS. The structure of sansanmycin was elucidated by analyses of its alkaline hydrolysate and spectroscopic analyses. Sansanmycin exhibits antibacterial activity against *Mycobacterium tuberculosis* H₃₇Ra and *Pseudomonas aeruginosa* with MIC values of 10 and 12.5 μ g/ml, respectively.

Keywords Sansanmycin, nucleosidyl-peptide, antibacterial activity, *Mycobacterium tuberculosis* H₃₇Ra, *Pseudomonas aeruginosa*

In the course of a screening program for new antiobiotics, we found a new nucleosidyl-peptide antibiotic, sansanmycin, from an unidentified *Streptomyces* sp SS (CGMCC No. 1764). Sansanmycin inhibited not only *Pseudomonas aeruginosa* but also *Mycobacterium tuberculosis* H₃₇Ra. Chemical and spectroscopic analyses revealed that it belonged to the class of nucleosidyl-peptide antibiotics represented by the pacidamycins [1~3], mureidomycins [4~6] and napsamycins [7]. Herein we describe the fermentation, isolation, structural elucidation, and antibacterial activity of sansanmycin.

The unidentified *Streptomyces* sp SS was isolated from a soil sample obtained from Guizhou, China. Sporulating slant cultures of the strain SS grown on ISP 2 medium were used to inoculate into 500-ml Erlenmeyer flasks which contained 100 ml of a production medium consisting of

glucose 1.5%, corn steep liquor 0.5%, peptone 0.3%, NaCl 0.4%, (NH₄)₂SO₄ 0.5%, CaCO₃ 0.3% (pH 7.5). The inoculated flasks were incubated on a rotary shaker (220 rpm) at 27°C for 96 hours. Antibiotic activity was determined by a paper-disk agar diffusion assay using P. aeruginosa on Mueller-Hionton medium. The fermentation broth was filtered to remove the mycelia, 20 liters of filtrate thus obtained was applied on a column of Amberlite XAD-2 (2 liters), and after washing with 10 liters of water and 8 liters of 20% aqueous methanol successively, the adsorbed materials were was eluted with 8 liters of 50% aqueous methanol. The active fraction was concentrated in vacuo and lyophilized to obtain a crude powder (15.2 g). Then 5 g of the crude powder was dissolved in 10 ml of buffer A $(0.1\% \text{ (w/v)} \text{ (NH}_4)_2 \text{CO}_3 \text{ - MeOH}, 1:4 \text{ (v/v)})$, and then was applied to an ODS (YMC Gel, ODS-A, 12 nm, S-150 μ m) column (50×3 cm, 353 ml) which was pre-equilibrated in buffer A. The column was sequentially eluted at 3 ml/minute with buffer A (0.3 liters), followed by a gradient of buffer A to buffer B (0.1% (w/v) (NH₄)₂CO₃ -MeOH, 1:1 (v/v)) over 1.5 liters. The bioactive fractions

Fig. 1 Structure of sansanmycin.

H. Z. Xu (Corresponding author), Y. Y. Xie, R. X. Chen, S. Y. Si, C. H. Sun: Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Tiantanxili No 1, Beijing 100050, P.R. China, E-mail: xhz882@sohu.com

Position*	¹³ C shift	¹ H shift	Multiplicity	Extra signals due to conformers	
				¹³ C shift	¹ H shift
Uracil-2	154.4		N–CO–N	154.6	
Uracil-4	169.6		CO-N	170.0	
Uracil-5	105.1	5.40	СН		5.82
Uracil-6	143.2	7.28	СН	142.3	6.86
Sugar-1	96.0	5.90	O-CH-N	96.3	5.97
Sugar-2	75.6	4.38	O-CH	75.3	4.15
Sugar-3	35.6	2.82	CH ₂	35.8	2.70
					2.56
Sugar-4	147.5		>C=	146.9	
Sugar-5	99.8	5.92	-CH=	99.4	5.97
AMBA-1	170.6		CO-N	170.2	
AMBA-2	58.5	4.61	СН	58.9	4.49
AMBA-3	53.6	4.91	СН	56.2	4.13
AMBA-4	16.1	1.17	СН ₃	16.6	0.57
AMBA-N–CH ₃	32.8	2.93	N–CH ₃	30.8	2.65
<i>m</i> -Tyr-1	177.8		CO-N	179.0	
<i>m</i> -Tyr-2	54.8	4.04	СН	54.4	4.28
<i>m</i> -Tyr-3	41.9	2.50	CH ₂	43.3	2.67
		2.87			2.87
<i>m</i> -Tyr-1′	140.9		ArC		
<i>m</i> -Tyr-2′	118.9	6.71	ArCH		6.68
<i>m</i> -Tyr-3′	158.9		Ar-C–O		
<i>m</i> -Tyr-4′	117.2	6.77	ArCH		
<i>m</i> -Tyr-5′	133.2	7.21	ArCH		
<i>m</i> -Tyr-6′	124.0	6.72	ArCH		
Trp-1	182.2		-COOH		
Trp-2	59.1	4.38	СН		
Trp-3	31.2	3.24	CH ₂		
		3.07			
Trp-2'	126.9	7.14	СН		
Trp-3'	113.2		ArC	113.3	
Trp-3a'	130.2		ArC		
Trp-4'	121.6	7.59	ArCH		
Trp-5'	121.9	7.07	ArCH		
Trp-6'	124.5	7.14	ArCH		
Trp-7'	114.5	7.40	ArCH		
Trp-7a'	138.9		ArC		
Ureido	161.1		N–CO–N	161.2	
Methionine-1	177.4		CO-N	177.5	
Methionine-2	55.7	4.26	СН		
Methionine-3	33.8	1.87	CH ₂		
		1.79	2		
Methionine-4	32.1	2.41	CH ₂		
Methionine-S-CH ₂	17.0	1.98	CH ₃		
3			5		

Table 1 $\,^{1}\text{H}$ NMR (600 MHz) and ^{13}C NMR (150 MHz) data for sansanmycin

The spectra were recorded in slightly alkaline D_2O (pD 8). The chemical shifts (δ) are given in ppm.

* Abbreviations for the structure units are: *m*-Tyr=*m*-tyrosine, Trp=tryptophan, AMBA=2-amino-3-

methylaminobutyric acid.

were analyzed by HPLC (SHIMADZU VP-ODS column, 150×4.6 mm; 40% MeOH; flow rate, 0.7 ml/minute; UV detection at 254 nm; oven temperature, 40°C). The fractions containing sansanmycin were combined, desalted by adsorption on an X-5 macropore resin (Nankai Chemicals, China) column, and concentrated *in vacuo* to give a white powder of sansanmycin (200 mg).

Sansanmycin 1: whiter powder; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm 221, 258, 290; FAB-MS *m/z* 886 [M+Na]⁺, 908 [M+Na+Na-H]⁺, ESI-MS *m/z* 864.4 [M+H]⁺, HR-ESI-MS *m/z* 864.33342 [M+H]⁺ (calcd for C₄₀H₅₀N₉O₁₁S, 864.33505). See Table 1 for NMR spectral data. The NMR data were recorded in slightly alkaline D₂O (pD 8) to partly simplify the spectra which were complicated by peak doubling due to rotational conformers about the amide bonds. This phenomenon is often observed in peptides especially those containing *N*-methylated amino acids or proline. The ESI-MS/MS data of the parent ion peak (*m/z* 864) are shown in Fig. 2. The structure of sansanmycin was deduced from these data as well as analyses of the alkaline hydrolysate.

GC-MS analyses of the alkaline hydrolysate (4 N NaOH, 110°C, 18 hours) of sansanmycin as their trifluoroacetyl *n*-butyl ester derivatives indicated the presence of methionine, *m*-tyrosine, tryptophan and 2-amino-3-methylaminobutyric acid (AMBA). The presence of an unusual nucleoside moiety in the molecular was suggested by the ¹H and ¹³C NMR data for sansanmycin, including

results from COSY, DEPT, HSQC and HMBC experiments, in which the chemical shift data were in accordance with reported values of those of pacidamycin D [3] except for the peak doubling.

The total structure of sansanmycin was established by the analysis of the ESI-MS/MS spectrum of the protonated molecular ion, m/z 864 (Fig. 2). Sequence selective fragmentations observed for sansanmycin showed complete similarity to those reported in the FAB-MS/MS spectrum of mureidomycin A except those originating from the *C*terminus. The fragment ions at m/z 205 and 660 observed for sansanmycin indicated that it possessed a tryptophan residue at the *C*-terminus. The presence of the uracil unit in sansanmycin was revealed by the fragment ion corresponding to loss of m/z 112 from the daughter ion (m/z 846, loss of H₂O from the parent ion). The total structure of sansanmycin was thus elucidated as shown in

Table 2 The MIC of sansanmycin

Test organism	MIC (µg/ml)	
Mycobacterium tuberculosis H ₃₇ Ra	10	
Pseudomonas aeruginosa ATCC 10145	12.5	
Staphylococcus aureus ATCC 90124	200	
Escherichia coli ATCC 11775	200	

Fig. 2 The ESI-MS/MS data of parent ion peak (m/z 864) of sansanmycin.

Fig. 1.

Sansanmycin is active against *M. tuberculosis* $H_{37}Ra$ and *P. aeruginosa* with MIC values of 10 and 12.5 μ g/ml, respectively, but has very poor activity against other Gramnegative and Gram-positive bacteria, MIC values being higher than 200 μ g/ml (Table 2).

References

- Karwowski JP, Jackson M, Theriault RJ, Chen RH, Barlow GJ, Maus ML. Pacidamycins, a novel series of antibiotics with anti-*Pseudomonas aeruginosa* activity. I. Taxonomy of the producing organism and fermentation. J Antibiot 42: 506–511 (1989)
- Chen RH, Buko AM, Whittern DN, McAlpine JB. Pacidamycins, a novel series of antibiotics with anti-*Pseudomonas aeruginosa* activity. II. Isolation and structural elucidation. J Antibiot 42: 512–520 (1989)
- 3. Fronko RM, Lee JC, Galazzo JG, Chamberlain S, Malouiun

F, Lee MD. New pacidamycins produced by *Streptomyces coeruleorubidus*, NRRL 18370. J Antibiot 53: 1405–1410 (2000)

- Inukai M, Isono F, Takahashi S, Enokita R, Sakaida Y, Haneishi T. Mureidomycins A~D, novel peptidylnucleoside antibiotics with spheroplast forming activity. I. Taxonomy, fermentation, isolation and physico-chemical properties. J Antibiot 42: 662–666 (1989)
- Isono F, Inukai M, Takahashi S, Haneishi T. Mureidomycins A~D, novel peptidylnucleoside antibiotics with spheroplast forming activity. II. Structural elucidation. J Antibiot 42: 667–673 (1989)
- Isono F, Sakaida Y, Takahashi S, Konoshita T, Nakamura T, Inukai M. Mureidomycins E and F, minor components of mureidomycins. J Antibiot 46: 1203–1207 (1993)
- Chatterjee S, Nadkarni SR, Vijayakumar EK, Patel MV, Ganguli BN, Fehlhaber H-W, Vertesy L. Napsamycins, new *Pseudomonas* active antibiotics of the mureidomycin family from *Streptomyces* sp. HIL Y-82, 11372. J Antibiot 47: 595–598 (1994)